Efficient Forensic Analysis for Anonymous Attack in Secure Content Distribution

نویسنده

  • Hongxia Jin
چکیده

This article discusses a forensic technology that is used to defend against piracy for secure multimedia content distribution. In particular we are interested in anonymous rebroadcasting type of attack where the attackers redistribute the per-content encrypting key or decrypted plain content. Traitor tracing technology can be used to defend against this attack by identifying the original users (called traitors) involved in the rebroadcasting piracy. While traitor tracing has been a long standing cryptographic problem that has attracted extensive research, existing academia researches have overlooked many practical concerns in a real world setting. We have overcome many practical concerns in order to bring a theoretical traitor tracing solution to practice. The main focus of this article is on designing efficient forensic analysis algorithms under various practical considerations that were missing from existing work. The efficiency of our forensic analysis algorithms is the enabling factor that ultimately made the first time large scale commercialization of a traitor tracing technology in the context of new industry standard on content protection for next generation high-definition DVDs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پروتکل کارا برای جمع چندسویه امن با قابلیت تکرار

In secure multiparty computation (SMC), a group of users jointly and securely computes a mathematical function on their private inputs, such that the privacy of their private inputs will be preserved. One of the widely used applications of SMC is the secure multiparty summation which securely computes the summation value of the users’ private inputs. In this paper, we consider a secure multipar...

متن کامل

Piracy Protection for Streaming Content in Home Networks

In this paper we study content protection techniques to defend against piracy for streaming content in home networks where multiple digital devices are connected into a peer-based cluster and seamlessly work together. We are particularly interested in the anonymous re-broadcasting attack where pirates re-distribute the per-content encrypting key or the decrypted plain content. In literature, to...

متن کامل

Design Principles for Low Latency Anonymous Network Systems Secure against Timing Attacks

Low latency anonymous network systems, such as Tor, were considered secure against timing attacks when the threat model does not include a global adversary. In this threat model the adversary can only see part of the links in the system. In a recent paper entitled Low-cost traffic analysis of Tor, it was shown that a variant of timing attack that does not require a global adversary can be appli...

متن کامل

An efficient certificateless signcryption scheme in the standard model

Certificateless public key cryptography (CL-PKC) is a useful method in order to solve the problems of traditional public key infrastructure (i.e., large amount of computation, storage and communication costs for managing certificates) and ID-based public key cryptography (i.e., key escrow problem), simultaneously. A signcryption scheme is an important primitive in cryptographic protocols which ...

متن کامل

Mitigating Node Capture Attack in Random Key Distribution Schemes through Key Deletion

Random Key Distribution (RKD) schemes have been widely accepted to enable low-cost secure communications in Wireless Sensor Networks (WSNs). However, efficiency of secure link establishment comes with the risk of compromised communications between benign nodes by adversaries who physically capture sensor nodes. The challenge is to enhance resilience of WSN against node capture, while maintainin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJDCF

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2009